
SAND REPORT
SAND-2002-31 47
Unlimited Release

loping #I; e haviors for a
Glider UAV Using
P-ogr ing R rsdel

aratorles
dexico 87185and LI

i ..

dissemhaUon unlimited.

ia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Deparhnent of Energy by
Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer. or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their conhactors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U S . Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reoorts@adonis.osti. g.ov
Online ordering: htto:llwww.doe.eovlbridee

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@,ntis.fedworld.gov
Online order: http:Nwww.ntis.~oovlheldordermethods.as~?lo~7-4-O#on~ine

mailto:orders@,ntis.fedworld.gov

SAND-2002-3 147
Unlimited Release

Printed September 2002

Developing Maneuvering Behaviors
for a Glider UAV Using a Genetic

Programming Model

R. J. Pryor
Computational Biology and Evolutionary Computing Department

Dianne Barton
Critical Infrastructure Surety Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1 110

Abstract

[his report describes the methodology for using a genetic programming model
to develop maneuvering behaviors for an unmanned aerial vehicle (UAV) that is
also a glider. The use of glider UAVs for surveillance and information-gathering
operations has become increasingly important in defense and national security
applications. Through an evolutionary process similar to that found in nature, the
genetic programming model generates a computer program that when down-
loaded onto a glider UAV’s on-board computer will guide the vehicle to find
regions of lift for staying aloft while accomplishing an information-gathering
task. This report discusses various approaches to developing behaviors using
genetic programming and presents the results achieved.

Intentionally Left Blank

Introduction
Motivation
Relation to Previous Work

Genetic Programming Model
Program Representation

.. 7

.......... 8

.......... 8

.......... 9
. . Problem Defmition ... 10

Definition of Functions and Terminals .. 12
Tree Generation .. 13

Fitness Evaluation .. 14
........ 15 Creating the Next Generation

Selection Operator 15

Reproduction Operator 16

Crossover Operator 16

Mutation Operator .. 16

Solution Procedure ... 17
ASCII Tree Representation .. 19

Calculation Results .. 20
........ 22 History of a Simulation,

summary 24

........ 25

........ 26
Future Direction
References

Figures
Figure 1 . An example tree :
Figure 2 . Example initial conditions for UAV problem
Figure 3 . Illustration of the crossover operator ... 17

Figure 5 . ASCII file example .. 19

Figure 6 . Four tree structures considered .. 20

........ 10

........ 11

Figure 4 . Solution procedure used .. 18

Figure 7 . Illustration of a typical tree found in this study
Figure 8 . Results of a typical simulation calculation

Tables

Table 1 . List of Functions and Terminals
Table 2 . Calculation Parameters

6

.......... 22

.......... 23

.......... 12

.......... 24

Developing Maneuvering Behaviors for a Glider
UAV Using a Genetic Programming Model

Introduction

Developing maneuvering behaviors for an unmanned aerial vehicle (UAV) that is also
a glider is an important technical challenge. This type of vehicle is being considered for a
variety of defense and national security applications, such as surveillance and
information-gathering operations. The glider UAV's importance is based on the vehicle's
ability to stay aloft indefinitely because it does not require hel. And because the glider
UAV is quiet, it could also achieve some degree of stealth. The challenge comes about
because the software program used to maneuver or steer the glider UAV would have to
know how to find regions in space where the vehicle could obtain lift, to remember the
locations of these regions, and to account for possible movement of these regions in time.
The software program would have to perform all of these operations while looking about
the surrounding space gathering information.

Operationally, it is envisioned that many glider UAVs, from hereon referred to simply
as UAVs, would be deployed to complete a given information-gathering task. Each UAV
would have on-board electronics, including a small computer, a ground-positioning
system, an altimeter, communication equipment, and an obstacle detector. To enable
steering, each UAV would have the normal flight controls such as ailerons, a rudder, and
elevators. Although the deployed UAVs would behave autonomously, each would
communicate with other UAVs during the task.

Motivation

Two factors motivate this work. The fust is the desire to see whether we can create
the controlling UAV software automatically, that is, without having to write the software
ourselves. While employing a person to program the UAV application would certainly be
possible, the task would be difficult and time consuming. To create the controlling UAV
software, we use a genetic programming model. The primary output of the genetic
programming model is the application source code, which could be compiled and
downloaded onto the UAV to provide instructions to the UAV to accomplish its tasks.
The second factor motivating this work is the desire to see whether the program that is
developed by o w genetic progmnming model exhibits any novel approaches to solving
this problem. In other words, would the genetic programming model discover more
efficient ways of gathering information and finding lift regions than a human programmer
would?

Relation to Previous Work

This work extends the work done by Pryor on developing behaviors for tracking
robots described in Developing Robotic Behavior Using a Genetic Programming Model.
In a typical robot-tracking problem, robots are initially distributed randomly in a field and
given the task of locating a source that is emitting some kind of signal (smell or sound). A
robot’s behavior program provides instructions to its motor control system to move to the
source location while navigating around obstacles that lie in the robot‘s path. As in the
current UAV application, a genetic programming model was used to create the robot’s
controlling computer program.

The UAV problem is more difficult than the robotics problem because more
objectives are required to accomplish the task. In the robotics problem, there was a single
objective: to get to the source of the signal. The UAV problem, on the other hand, has
four objectives. First, the UAV must get to the lift region. The vehicle is initially given
only enough altitude to reach the lift region. Second, the UAV must gain sufficient
altitude to accomplish its mission. Third, the UAV must make its flight to gather
information. And last, the UAV must return to the lift region before crashing into the
ground.

In the sections that follow, we describe the methodology employed for the UAV
problem in a logical step-wise fashion. The goal is to provide an overview of the whole
process so that the reader has a good understanding of how the problem of developing the
UAV’s maneuvering program was solved.

Genetic Programming Model

Genetic programming is one of many types of genetic algorithms that use
evolutionary or adaptive processes to solve practical problems. Holland’s pioneering
book Adaptation in Natural andArfiJicia1 Systems provides a general framework for such
analysis. Many books have since been written on genetic algorithms, with Goldberg’s
Genetic Algorithms in Search, Optimization, and Machine Learning ranking among the
best. The most informative source on the theory of genetic programming is Koza’s
Genetic Programming: On the Programming of Computers by Means of Natural
Selection. This book is very well written, provides an excellent bibliography, and fills in
much of the detail not provided in this report.

So what is genetic programming? Genetic programming is a methodology. When a
computer program employs this methodology, it produces as output the source. code of
another computer program. This source code can then be compiled and executed. Unlike
most computer programs, a human programmer does not write these programs. Instead,
the programs are said to evolve in a biological setting, with rules of natural selection and
survival of the fittest playing an important part in their evolution.

Evolution occurs in discrete steps called generations. A generation is composed of a
population of individuals, each of which is a complete computer program. The size of the
population can vary depending on the problem; however, hundreds, if not thousands, of
programs are typical. Some programs (individuals) will be very effective at doing the
prescribed task-some will not. Each program is scored for applicability, and its fitness is
given a numerical score. The higher the fitness, the better the individual. The goal is to
evolve the very best program that solves the problem of interest. In this application of
genetic programming, we are trying to find the program for the UAV.

The solution strategy is to improve upon these evolving programs by creating
successive generations of more fit individuals. To create the next generation of
individuals, the genetic operators of selection, reproduction, crossover, and mutation are
used. The purpose of selection is to choose an individual fiom the current population. In
general, this individual will be better than most, but may not be the very best.
Reproduction moves a selected individual directly into the next generation. Crossover
uses the selection operator twice to select two parents fiom the current population that
will be mated in some way to form an offspring that will be placed in the next generation.
Mutation uses the selection operator once to choose an individual that will be mutated
(changed) in some way and then placed in the next generation. The four genetic operators
are discussed in more detail in later sections of this report.

The evolutionary calculation described above proceeds across many generations until
a single individual is found that meets the convergence criterion. This controlling
program is then saved for use by the UAVs.

Program Representation

This section describes how the individual programs are represented within the genetic
programming model. The representation should allow complete flexibility in defining
programs, yet it must also ensure that the performance of the genetic operations is not too
cumbersome. A tree-like structure best meets these requirements.

The basic building block of a tree is called a node, with all nodes in the tree having
the same fixed structure. The first element of a node specifies the node type, which can
either be a function or a terminal. Afunction node performs a mathematical or boolean
operation and generally has branches (nonzero pointers) that point to other nodes. The
number of branches depends on the kind of function, e.g., add, subtract, multiply. A
terminal node normally returns a value, does not have any branches (all pointers are
zero), and terminates that section of the tree. Other elements within a node are a value
position and pointers to other nodes.

Consider the example tree shown in Figure 1.

Figure 1. An example tree.

This tree has five nodes and is three levels deep. The tree is evaluated by starting at its
root, or top, and working downward until a terminal node is reached. A terminal node
retums a value that is then processed upward in the tree.

To evaluate the example tree, we begin at the frst node denoted by “Start,” which is a
function node whose kind is specified as “add.” This kind of function node points to two
other nodes that will return values that will be summed by the add node. At pointer 1,
there is a terminal node that returns a constant value of 2.3. At pointer 2, there is a
function node whose kind is “multiply.” This node points to two other nodes: one (at
pointer 3) is a value node that returns the value of 5.9, and the other (at pointer 4) is a
value node that returns the value of a global variable x. These two values will be
multiplied by the multiply node, which will return the resultant to the add node above it.
The tree is equivalent to the expression

y = 2.3 + 5.9x,

where y is the value returned by the root node at the top of the tree. The tree used in the
UAV program has many more function and terminal types than the example tree and is
also much larger than the example tree.

Problem Definition

In the process of evolving the optimum behavior, the UAV will be given about a
thousand problems to solve. At the start of each problem, the UAV will be placed on a
grid at a random ground-level position with a random initial direction. The grid is three-

10

dimensional (x, y, z) with the fmt two dimensions, x and y, presenting the UAV’s ground-
level coordinates. The third dimension, z, represents the UAV’s altitude, which can range
from zero for ground level to a maximum height of 250 units. The ground-level space is
square, with coordinates ranging from -300 to +300 units on each side. The initial
direction of the UAV can be facing north, east, south, or west. The UAV’s altitude is set
so that there is just sufficient height for the vehicle to reach the lift region before striking
the ground. The direction and size of the lift region, like the initial position and direction
of the UAV, are randomly set. The lift region pivots about the center of the coordinate
system and can be pointed in any of four directions-north, east, south or west. The
length of the lift region ranges kom 80 to 100 units; and its width is 10 units, with 5 units
on either side of the pivot point. The initial position of the UAV is no more than 75 units
from the pivot point. At each time step, the UAV moves one unit in the direction that it is
facing. If the UAV is in the lift region, it gains one unit of altitude per time step. If the
UAV is outside the lift region, it loses one unit of altitude per time step. The UAV has
600 time steps to complete the problem (mission).

Figure 2 illustrates an example configuration at problem start-up. The T-figure represents
the UAV, the rectangle represents the lift region, and the large dot denotes both the center
of the ground coordinate system and the pivot point for the lift region. The coordinates of
the UAV, the size and direction of the lift region, and the altitude of the UAV are also
shown.

t
N

Lift region is pointing
west. Length is 92 units.

Pivot point.
Location is (0,O).

/
/

-
-f

UAV is pointing north.
Location is (-62, -45).
Altitude is 75.

Figure 2. Example initial conditions for UAV problem.

11

Definition of Functions and Terminals

12

This section defines the set of functions and terminals that are used by our genetic
programming model. It is important to note that our selection of a set of functions and
terminals is not unique, nor is there any theory that indicates whether any one set is better
than another. The only way to determine the effectiveness of a set is to try it out and see
whether it works.

ALTITUDE
RETURN
LIFT

Returns a value of 1 if the UAV is in the lift
area; otherwise, it returns a value of 0.

0

The set of 23 functions and terminals used in our UAV application are listed in
Table 1. There were 7 functions (Index 1-7) and 16 terminals (Index 8-23). It should be
noted that all nodes return a value, even if the nodes only direct movement of the UAV.

Table 1. List of Functions and Terminals

ADF2

ADF3

ADF4

22 RETURN Calls ADF3 and returns its value. 0

23 RETURN Calls ADF4 and returns its value. 0

Automatically Defmed Functions, or ADFs, are function calls that can be made from
within the main tree. ADFs are discussed below in the section named "Calculation
Results."

Tree Generation

From previous discussion you may recall that the genetic operators are used to create
the next generation of behavior programs (trees) from the current generation, but you may
be wondering how the first generation was created. The answer is that the first generation
of trees is created randomly. To generate a tree, a recursive function is called that needs to
know only the current level or position in the tree. We define level 1 as the top of the tree,
or root. Level 2 is the level just below the root. Level 3 and the remaining levels follow.

The level number is initially set to zero. When the recursive function is called, it first
increments this level number by one and then checks on its value. If the level number is
equal to one, the recursive function inserts a ROOT node, defines a single new node, sets
a pointer to the new node, and then calls itself pointing to the new node.' On all other

' For some tree structures, more than one pointer may be defined.

levels, the recursive function selects randomly from the functions and terminals, defines
the appropriate number of new nodes and pointers, and then calls itself for every new
node.

Three parameters are used to control the size of a tree. The parameter MMTREESIZE
specifies the minimum number of levels in a tree, while the parameter MAXTREESIZE
specifies the maximum number of levels in a tree. These parameters are used in the
following way. If the level number is less than MMTREESIZE, the recursive function
will only select from thefunction node kinds, e.g., add, subtract. This constraint ensures
that at least one more level will be added. If the level number is equal to
MAXTREESIZE, the recursive function will only select from the ferminal node kinds.
This constraint ensures that no more levels are added to this part of the tree because
terminal nodes do not have any branches. For all other level values, a random selection is
made. The parameter MAXNODES specifies the maximum number of nodes in a tree.
When a tree gets too large, it is deleted and a new tree is created.

Fitness Evaluation

The most important aspect of the genetic programming methodology is the evaluation
of tree fitness. Fitness provides the selection pressure that drives the programs to the
desired behavior. The fitness of each tree in a population is evaluated independently. The
evaluation involves testing a tree against a set of problems that have been created
randomly, as previously discussed. After all problems have been run, a fitness score for
the tree is computed.

A problem description consists of the initial position, direction, and altitude of the
UAV, and the direction and size of the lift region. We select these parameters using a
random number generator. Once these initial conditions are specified, a simulation
calculation is performed. The UAV moves step-wise according to instructions provided
by the behavior program. There is a finite number of steps in a simulation, and during
each step the UAV is permitted to turn to a given direction, to go straight ahead, or to turn
in the direction of the pivot point (home). If the UAV ends a time step inside the lift
region, its altitude is incremented by one; otherwise, its altitude is decremented by one.
After the prescribed number of time steps has elapsed, MAXSTEPS, the maximum
distance from the pivot during the simulation, is then recorded. When all of the problems
have been run for the. current tree, an average maximum distance is computed. The fitness
for the tree is set to this average, subject to penalty conditions:

Fitness = Average Maximum Distance.

The maximum distance for a problem is set to zero if the UAV's altitude ever became
negative, or if the flight ended with insufficient altitude for it to reach the lift region

14

before striking the ground. To prevent trees from becoming exceedingly large, we reduce
the tree fitness by a slight amount depending on the number of nodes in the tree:

Fitness reduction = o! [number of tree nodes],

where o! is a small constant.

The maximum fitness a tree can obtain is 2 15. This assumes that the UAV takes into
account the variation in the size of the lift region, which ranges from 80 to 100 units long,
and that the maximum altitude of the UAV is 250 units. The best tree we found yielded a
fitness of214.23.

Creating the Next Generation

The operators of reproduction, crossover, and mutation are used to create the next
generation of individuals. Each operator works independently of the other operators, and
the usage of each operator is determined by its assigned probabilities. The reproduction,
crossover, and mutation operators use the selection operator to determine the individuals
in the current population that will be acted upon.

The population size POPSIZE of each generation remains the same. To create the
next generation, a loop over the necessary individuals is started. Within the loop, a
random number is drawn and three probabilities are compared. The probability PROBRP
determines the percentage of times within the loop that reproduction is used. Likewise,
PROBCR and PROBMU determine the percentage of times that crossover and mutation
are used, respectively. The sum of the three probabilities is 1.0. From the random number
and the three probabilities, an operator is selected that then creates one new individual in
the next generation. When the required number of individuals is created, the loop is
terminated.

Selection Operator

The selection operator is used to identify individuals in the current population for
reproduction, crossover, or mutation operations. A tournament algorithm is used: which
is easy to implement and is relatively fast. The algorithm works in the following way.
NTOUR individuals are randomly selected from the population. The fitness values of
these individuals are compared, and the individual with the highest fitness is the winner
of the tournament, that is, the one selected. If two individuals are needed, as in the case of
crossover, the tournament is repeated. Note that the parameter NTOUR affects the
distribution of individuals selected, and thus increasing its value moves the distribution

Several different algorithms were considered, such as roulette wheel selection, but the tournament
algorithm worked well and it was fast.

toward more elite individuals in the population. For example, if the value of NTOUR is
equal to the population size, only the most fit individual will be selected. Reducing the
value of NTOUR improves diversity by allowing more individuals to take part in forming
the next generation.

Reproduction Operator

The reproduction operator is the simplest of the operators used. Reproduction makes
an exact copy of a selected individual in the current generation and places it into the next
generation. The fitness of this individual is saved so that the fitness value will not need to
be recomputed.

Crossover Operator

Crossover is done in three steps. First, the selection operator is called twice to select two
individuals from the current population. Next, for each selected individual, a cutpoint
node is randomly selected among the nodes of its tree. Finally, the new tree is created by
removing the cutpoint node and all nodes below it from the fKst tree and replacing them
with the cutpoint node and all nodes below it from the second tree. Figure 3 illustrates
this last step. The new tree, which was created by splicing together two trees in the
current population, is then placed in the next generation.

The crossover operator is slightly more complicated than the reproduction operator.

Mutation Operator

The mutation operator removes part of an existing tree and replaces it with a
randomly generated new part, using the same recursive function that created the fmt
generation. A tree is selected fiom the current population, and a cutpoint node is
randomly selected among its nodes. That node and all nodes beneath it are then removed.
Subsequently, the recursive hnction is called at the cutpoint location to generate a new
part of the tree. The modified tree is then placed in the next generation.

16

Tree 1 Tree 2

cutpoint + BZ

$“tpol”t A0 A7 A9 E8

New Tree

Figure 3. Illustration of the crossover operator.

Solution Procedure

Figure 4 illustrates the basic solution procedure. The recursive function discussed
previously creates the first generation. The fitness of each individual in the population is
then determined, followed by the initiation of a loop over generations. Within the
generation loop, the next generation is created and the fitness of each individual within
that generation is calculated. A test is then made to determine whether any individual
meets the convergence criterion (a value greater than 214). If an individual is found, the
loop terminates and the calculation ends. If no individual is found, the calculation
continues.

17

Initialize first generation
Calculate Fitness

7 c
Selection

c
E c

c

.-

Crossover, Mutation, Reproduction

0
Calculate Fitness -

Problem converged ?

6
0 u
0 <
3
0

3
E
5
Q
U

Done

Figure 4. Solution procedure used.

The calculations were done on the CPLANT massively parallel computer at Sandia
National Laboratories. Running on the parallel computer required some slight
modifications in the basic solution procedure to allow sharing of the “best” tree among
processors. The number of processors allocated to a calculation varied, with the average
being about 64. A processor is identified by its number, whose range is 0 to the number of
processors allocated minus 1. In our implementation, each processor had the same genetic
program and ran independently of the other processors. At the end of each generation,
each processor would determine the best tree in its population and send it to processor 0
where the globally best tree would be determined. The send would only occur if the local
best tree had a larger fitness than the global best it had received earlier. Processor 0 would
then broadcast the new globally best tree to all processors. Accordingly, each processor
would then decide whether the globally best tree would be employed in creating the next
generation, using an algorithm that depended on the generation number and its processor
number. E a processor decided to use the globally best tree, the processor inserted that
tree into the current generation to replace the trees that had the smallest fitness. In this
way, the globally best tree would be included in all of the genetic operations that
produced the next generation.

The reason for not using the globally best tree all the time is to maintain diversity in
the entire population. The convergence rate is proportional to a measure of the diversity.
If all processors used the globally best tree in each generation, it would not be long before
all of the trees would look much the same, and the rate of improvement would be
reduced.

18

hocessor 0 performs two additional tasks. It writes an ASCII representation of the
globally best tree to disk for restart purposes and simulation studies, and it also writes an
equivalent C source-code version that can be used in simulators that cannot use the ASCII
tree. The ASCII representation is discussed further in the next section.

In a companion SAND report titled An Evaluation of the Convergence Properties of a
Parallel Genetic Progumming Method, Barton and Pryor give a detailed discussion of
the parallel genetic programming parameters used in the UAV study.

ASCII Tree Representation

The genetic programming calculation could be restarted by reading in the globally
best tree from a previous run. We stored this tree to a disk file in an ASCII format. This
same file can be read by a simulator for validation and investigative studies or used to
create an executable program on an actual glider UAV. Because this ASCII file is
somewhat novel, it is presented here.

The interpretation of the ASCII file assumes that a given genetic programming
function has a fmed number of pointers. We write the file node by node, starting at the
top of the tree and moving downward. During this downward traversal, the pointers are
resolved from left to right. When a terminal is reached, the next left-most pointer of the
function directly above is then resolved. If that function has no pointers remaining, we
move to the next left-most pointer of the function above. We continue in this fashion until
all of the tree nodes are written. Reading the file to recreate the tree is done in the same
way, resolving nodes from top to bottom and pointers from left to right. If a value needs
to be stored, as in the case of the value node, the node descriptor can contain the value.

An example of an ASCII file for the tree shown in Figure 1 is given in Figure 5.

ASCII File Contents
In this example, each of the
five nodes has a descriptor
containing two elements: a
type and a value. The type
indicates the type of node, and
the value is used by some
nodes to store auxiliary
information.

Figure 5. ASCII file example.

Calculation Results

In computing the UAV’s behavior, we considered four different tree structures. These
structures are illustrated in Figure 6. The triangles represent trees containing hundreds of
nodes and tens of levels deep. An example of how any one of these trees might appear is
shown in Figure 7, which follows the discussion of the tree structures.

Tree structure A

Tree structure B

.....

Tree structure C

A

Tree structure D

Figure 6. Four tree structures considered.

For all tree structures, we ran 10 independent cases on the CPLANT computer. Each
case used 64 processors, and each processor contained a population of 2000 trees
(POPSIZE). The maximum tree size was set to 1500 nodes, and the maximum number of

20

levels was set to 100. The number of registers used for storing information from one time
step to another was set to 20. The maximum number of generations was set to 300. The
mutation probability (PROBMU) was set to 0.1, and the crossover probability (PROBCR)
was set to 0.8, leaving the reproduction probability (PROBRP) equal to 0.1.

Tree structure A. This tree structure contained only a main tree (M). It contained no
ADFs (automatically defined functions). The tree would be exited when a turn command
terminal was executed. The best fitness achieved was 192.32. This tree contained 1105
nodes and was 93 levels deep. The tree had problems resolving the variation in size of the
lift region. The UAV would return to the lift region before it needed to, thus not
effectively using all of its altitude to gain distance from the pivot point.

Tree structure B. This tree structure used two trees. At each time step, the ponder tree
(P) would be called, followed by the decision tree (D). The ponder tree could read all of
the environmental data (UAV positional and lift parameters) and could also read from
and write to the registers; however, the ponder tree could not execute any turn commands.
The decision tree could not read any of the environmental data, but it could read and write
to the registers and execute the turn commands. Communication between the trees
occurred through the registers. Neither the ponder tree nor the decision tree used ADFs.
The intent in using two trees like this was to separate some of the behavior logic from the
processing of environmental data so that leaming would proceed more efficiently. We did
see an improvement over structure A, as the best fitness achieved was 205.04. Like
structure A, structure B contained a large number of nodes. Together, the ponder and
decision trees had a total of 1232 nodes.

Tree structure C. This tree structure used three trees. The turn commands were turned
o f f and no ADFs were used. At each time step, the three trees were evaluated. The tree
with the largest output would indicate whether the UAV should turn left (L), go straight
ahead (S), or turn right (R). Each tree could read from and write to the registers and had
access to the environmental data. Of the ten rum, the best fitness achieved was 183.05.
Like structure A, this structure had problems resolving the size of the lift region. Also, we
observed that one direction of the lift region was generally not handled as well as the
other three directions. The three trees were about equal in size, with the total number of
nodes averaging about 1100.

Tree structure D. This tree structure used four ADFs (1 4) and a main tree (M). ADFs
are callable programs that are similar to function calls in normal programming. ADFs
could only be called from the main tree, i.e., one ADF could not call itself or another
ADF. The main tree and the four ADF trees had access to the registers and the
environmental data. The ADFs and the main tree were constructed using the same
algorithm and were treated as branches off the root node. Crossovers could mix ADFs
and main trees from different members of the population.

This structure gave nearly perfect results. The best fitness found was 214.23. For this
tree, the total number of nodes was 1401, and the number of levels was 59. For all of the

I .

runs with this structure we had set the Fitness Reduction constant O! to zero. When we set
the constant to 0.0005 for this tree on a restart calculation, its size decreased to 487 nodes
and 26 levels with no decrease in the (uncorrected) fitness. Clearly, the tree had a lot of
tree branches and nodes that were not being used. We also noted that one of the four
ADFs was never called.

Figure 7. Illustration of a typical tree found in this study.

History of a Simulation

To highlight characteristics of the implementation, we have included a brief history of
one simulation. In this simulation the lift region was pointing north. Its size was 83 units.
The initial position of the UAV was (-40, -32), and its initial altitude was 54 units.
Figure 8 shows this history at eight different steps during the transient.

22

T

Time step = 0 Altitude = 54

-
Time step = 10 Altitude = 32

Time step = 50 Altitude = 72

Time step 4 5 0 Altitude = 132

Time step = 575 Altitude = 3

CI

Time step = 600 Altitude = 26

Figure 8. Results of a typical simulation calculation.

23

Table 2 lists the parameters used in the calculations of the sample simulation.

Table 2. Calculation Parameters

Summary

The genetic programming model successfully produced a behavior for a glider UAV.
The best behavior was one that employed ADFs (tree structure D), and its fitness was
very close to the theoretical maximum. The computations were performed on Sandia’s
massively parallel CPLANT computer at reasonable computing costs.

We have found that genetic programming models offer two advantages over more
traditional methods for determining UAV behavior. The first, and perhaps most important
benefit, is that new and sometimes novel solutions to problems are found-nes that we
might not have considered. This occurs because we do not constrain the solution. In
genetic programming we provide the tools (hnctions and terminals) and a goal to reach.
The genetic program determines the best way to solve the problem. The second benefit is
that the solutions appear to be more robust because many problem conditions and
variations are investigated in the solution process.

We developed two simulators, one for the Macintosh and one for the PC, and placed
them on our web site. Both simulators use tree structure D for their behavior. The

24

simulators can be found at Ao://fto.cs.sandia.pov/uub/riprvor. This site also contains other
papers on this subject.

Future Direction

The work on using genetic programming for UAV behavior is far ffom complete.
More complex situations than the ones treated in this report are likely to be encountered
as UAVs enter actual field operations. For example, decisions beyond movement, such as
collision avoidance and operations in adverse conditions, must be considered. From our
experience in developing this application, we believe that the genetic programming model
can handle these conditions.

We are now beginning to use genetic programming in war-gaming applications. The
challenge is reproducing the behavior of soldiers in battlefield operations and the
coordination of troops needed to accomplish a mission. For example, genetic
programming models for war-gaming applications need to take into account that
individual soldiers are part of a command structure and thus act not only as individuals,
as do the UAVs in this study, but they also cooperate as a group to achieve the command
goal.

References

Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning.
Reading, M A Addison-Wesley, 1989.

Holland, John H. Adaptation in Natural and Artijcial Systems. Ann Arbor, MI:
University of Michigan Press, 1975.

Koza, John R. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, M A The MIT Press, 1992.

Pryor, Richard J. Developing Robotic Behavior Using a Genetic Programming Model.
SAND98-0074. Albuquerque, NM: Sandia National Laboratories, 1998.

Barton, Dianne, and Pryor, Richard J. An Evaluation of the Convergence Properties of a
Parallel Genetic Programming Method. Albuquerque, NM: Sandia National
Laboratories, (Draft report, September 2002).

26

Distribution

1 MS 0321
1 MS 0188
1 MS 1170
1 MS 0316
1 MS 0451
1 MS 0785
1 MS 0318
1 MS 0318

40 MS 1109
40 MS 1 1 0 9

1 MS 0165
1 MS 9018
2 MS 0899
2 MS 0612

W. J. Camp, 9200
C. Meyers, 1030
R. D. Skocypec, 153 10
M. D. Rintoul, 9212
J. E. Nelson, 65 15
D. L. Harris, 6516
C. S. Davidson, 9200
M. Boslough, 9212
R. J. Pryor, 9212
Dianne Barton, 65 15
N. Singer, 12640
Central Technical Files, 8945-1
Technical Library, 961 6
Review and Approval Desk, 9612, For DOE/OSTI

	Abstract
	Contents
	Introduction
	Motivation
	Relation to Previous Work

	Genetic Programming Model
	Program Representation
	Problem Definition
	Definition of Functions and Terminals
	Tree Generation
	Fitness Evaluation
	Creating the Next Generation
	Selection Operator
	Reproduction Operator
	Crossover Operator
	Mutation Operator

	Solution Procedure
	ASCII Tree Representation
	Calculation Results
	History of a Simulation

	Summary
	Future Direction
	References
	Distribution

